Assessing The Role of Transportation Demand Management Policies on Urban Air Pollution: A Case Study of Mashhad, Iran

Meeghat Habibian
Assistant Professor,
Department of Civil and Environmental Engineering
Amirkabir University of Technology, Tehran, Iran

Mahdi Ostadi Jafari
M. Sc., Transportation Planning,
Department of Civil Engineering
Parand Branch, Islamic Azad University, Tehran, Iran

U.S.-Iran Symposium on Air Pollution in Megacities
National Academies of Sciences and Engineering
Beckman Center in Irvine, CA
3-5th Sep 2013
Background

- Transportation problems
 - Air pollution
 - Noise pollution
 - Daily delay
 - Depletion of energy
 - Road casualties
 - Water pollution
 - Waste production
 - ...

A Solution to discount transportation problems:

- Transportation Demand Management (TDM)

More efficient use of transportation resources
Background

- Need for long-term evaluation of TDM policies:
 - Difficulties in alternative/innovative practical solutions

- Special considerations:
 - Effects of TDM on attitudes and behavior is a long-term process
 - Factors may change during a long-term period
 - Probability of adding another policy
 - (Combination of policies)
Problem statement

- Assessing the role of TDM policies on air pollution of the city of Mashhad
 - Single and simultaneous policies
 - Over a 20-year period
 - Through a system dynamics model
- Evaluating a single policy
- Evaluating simultaneous policies
 - Combinations of specific policies
 - Conceptual procedure of policy integration
 - Developing an optimization procedure to identify optimal strategies
 - Extending the synergy function of TDM policies
 - Developing an option generation tool to find the best pair-wise combination and complement policy

References:
- Pendyala
- Vieira et al.
- May et al.
- Habibian and Ker
- Kelly et al. 2008 and May et al. 2012
Case study

- The city of Mashhad
 - a metropolis in North-East of Iran
 - The city population is about 2.6 million (2nd populated city in Iran)
 - As a religious city, Mashhad attracts 15 million visitors annually.
Map of the city
Transportation network of the city
Methodology

- System dynamics model
 - Based on: “every thing is dependent and changing”
 - An approach to understanding the behavior of complex systems over time
 - Deals with internal feedback loops and time delays that affect the behavior of the entire system
Partial presentation of the adopted model
Emissions

Motorcycle:

\[
CO = 76.7601/61v + 0.0095v^2 + 95.91/v \\
HC = 25.47 - 0.43v + 0.0024v^2 + 178.48/v
\]

Car and taxi:

\[
CO = 127.64 - 2.68v + 0.016v^2 + 160.12/v \\
HC = 6.06 - 0.10v + 0.00056v^2 + 42.57/v \\
NO_2 = 0.7 + 1.92/[1 + 93.54e^{-0.049v}]
\]

Bus and truck:

\[
NO_2 = 19.63 - 0.32v + 0.0037v^2 + 21.13/v
\]

TDM policies

- Increasing parking cost
- Increasing fuel cost
- Cordon pricing
Increasing parking cost

- Current state:
 - Implemented in main streets and the central part of the city
 - Price mechanism: Hourly (3000 Rials)

- Investigated levels:
 - 9000, 15000, 21000 Rials/hr

Note: 32000 Rials = 1 USD
Increasing fuel cost

- **Current state:**
 - Fixed price in all gas stations (4000 Rials/Liter)
 - About 320 Rials/Km

- **Investigated levels:**
 - 960, 1600, 2240 Rials/km
Cordon pricing

- Current state:
 - Implementation in central part of the city
 - Fixed price per entrance (25000 Rials/entrance)

- Investigated levels:
 - 50000, 75000, 100000 Rials/entrance into the extended central part of the city
Evaluating the imposed cost

\[I_c = \sum_{n=1}^{20} \sum_{i=1}^{3} (C_{NO_2,n,i} + C_{CO,n,i} + C_{HC,n,i}) \]

- where, \(C_{NO_2,n,i} \), \(C_{CO,n,i} \), \(C_{HC,n,i} \):
- Cost caused by emission of NO\(_2\), CO and HC, all imposed by vehicle type \(i \) (i.e., car, bus, motorcycle) in the year \(n \), respectively.

Cost of the studied pollutants

<table>
<thead>
<tr>
<th>Item</th>
<th>Variable</th>
<th>Unit</th>
<th>Cost (Rials)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NO(_2)</td>
<td>Vehicle-km</td>
<td>4800</td>
</tr>
<tr>
<td>2</td>
<td>CO</td>
<td>Vehicle-km</td>
<td>1500</td>
</tr>
<tr>
<td>3</td>
<td>HC</td>
<td>Vehicle-km</td>
<td>1700</td>
</tr>
</tbody>
</table>

Source: Based on Victoria transport policy institute (VTPI), 2009
Imposed cost of air pollution (I_C)

![Graph showing the imposed cost of air pollution (I_C) with varying policy levels. The graph compares parking cost, cordon pricing, and fuel cost across different policy levels.]
Fuel cost and Perking cost (F&P)

The Cost of NO$_2$, HC & CO emissions (Rials)

Parking cost (P)

Fuel cost (F)
Fuel Cost and Cordon Pricing (F & C)

The Cost of NO₂, HC & CO emissions (Rials)

Cordon price (C)

Fuel cost (F)
Parking Cost and Cordon Pricing (P & C)

The Cost of NO\textsubscript{2}, HC & CO emissions (Rials)

- Parking cost (P)
 - 6.8E+13 - 6.6E+13
 - 6.6E+13 - 6.4E+13
 - 6.4E+13 - 6.2E+13
 - 6.2E+13 - 6.0E+13
 - 6.0E+13 - 5.8E+13
 - 5.8E+13 - 5.6E+13
 - 5.6E+13 - 5.4E+13
 - 5.4E+13 - 5.2E+13

- Cordon price (C)
 - 6.8E+13 - 6.6E+13
 - 6.6E+13 - 6.4E+13
 - 6.4E+13 - 6.2E+13
 - 6.2E+13 - 6.0E+13
 - 6.0E+13 - 5.8E+13
 - 5.8E+13 - 5.6E+13
 - 5.6E+13 - 5.4E+13
 - 5.4E+13 - 5.2E+13
Assessing the role of 3 TDM policies on imposed cost of air pollution to a city

Policies sorted by their efficiency:
1. Increasing parking cost (P)
2. Cordon pricing (C)
3. Increasing fuel cost (F)

Assessing the pair-wise combinations of policies:
- P&C is the most effective
Future Works

- Investigating more TDM policies
- Investigating more pollutants
- Comparing the results of investigating similar TDM policies in other cities
- Applying different models to more elaborate on interactions of policies
Acknowledgement

- World Learning
- National Academy of sciences
- American Association for the Advancement of Science (AAAS)
- International Visitors Leaderships Program
- University of Southern California and University of California at Irvine
Questions

Meeghat Habibian, Ph.D.
Assistant Professor
Transportation Planning and Engineering
No. 406, Civil and Environmental Engineering

Address: Amirkabir University of Technology (Tehran Polytechnic)
No. 424, Hafez Ave. P.O.Box 15875-4413. Tehran, Iran

Tel: +(98)-21-64543042 Fax: +(98)-21-66414213
Webpage: http://aut.ac.ir/habibian Email: habibian@aut.ac.ir