Leveraging Student Research Experiences to Bridge the Gap for Underrepresented Minorities in STEM Careers

Irene O. Aninye, Ph.D.
RCP Senior Program Associate
American Association for the Advancement of Science

Emerging Researchers National Conference 2019
February 23, 2019
Washington, DC
Session Overview

- Introductions
- Review of National Data on Underrepresented Minority (URM) participation and persistence in STEM
- AAAS Research Competitiveness Program STEM Program Assessment Findings
- SWOT Assessment
- Discuss tools and approaches to engage URMs in STEM undergraduate research
Racial/Ethnic Distribution of S&E Degree Recipients, 2012
(U.S. Citizens and Permanent Residents)

- US Population (age 18-24)
- Associate's degrees
- Bachelor's degrees
- Master's degrees
- Doctoral degrees
- S&E Workers

- Black/AA
- Hispanic
- American Indian/AN
- Asian/PI
- White
- Unknown

National Science Board, STEM Education Data and Trends, 2014
Factors that Effect URM Persistence in STEM

Challenges
- Negative stereotypes and experiences
- Cultural and academic isolation
- Disparities in academic preparation

Interventions
- Social support and community building
- Academic services
Factors that Effect URM Persistence in STEM

Challenges

- Negative stereotypes and experiences
- Cultural and academic isolation
- Disparities in academic preparation

Interventions

- Financial support
- Social support and community building
- Academic services

Undergrad Research Experiences
Benefits of Undergraduate Research (UGR) Experiences

- Builds confidence in research and professional skills
- Increases preparation for and commitment to pursue graduate program in STEM
- Clarifies future career pathways in STEM

ALL Student participation in UGR
NSSE, 2017

STEM Student participation in UGR
Russell, 2006

Black student participation in UGR compared to White students (Delta-P)
Figueroa, 2013

16.27%
URM students who participated in UGR experiences were **17.4% more likely** to persist in STEM than those who did not. *(Chang et al., 2014)*

![Bar chart showing the effect of research participation on STEM graduate/professional school enrollment.](chart.png)

Effect of Research Participation on STEM Graduate/Professional School Enrollment

- **Structured Program**
- **Research with Faculty**
- **Any Research**

Hurtado, 2014
Bridging the STEM Gap for URM\text{s} through UGR

Racial/Ethnic Distribution of S\&E Degree Recipients, 2012

Effect of Research Participation on STEM Graduate/Professional School Enrollment

- Delta P
- Structured Program
- Research with Faculty
- Any Research

- All Students
- URM Students

- Black/AA
- Hispanic
- American Indian/AN
- Asian/PI
- White
- Unknown

National Data & Trends
AAAS Research Competitiveness Program

- Provides support to individual researchers, academic institutions, funding agencies, and governments in four program areas:
 - Peer Review of Research Proposals
 - STEM Program Assessments
 - Innovation and Entrepreneurship programs
 - Capacity-building and Competitiveness short courses
AAAS STEM Program Assessments

- 250+ strategic assessments (> $1 billion in programs)
 - Independent, external assessment to institutions and awardees
 - Large-scale multi-institutional initiatives
 - Established Program to Stimulate Competitive Research (EPSCoR – NSF, NASA, DoE)
 - IDeA Network for Biomedical Research Excellence (NIH INBRE)
 - Expert panel provides scientific and administrative assessment and guidance
 - Research infrastructure
 - Program design and leadership development
 - Student training and research
- Summary report of panel’s findings and recommendations

RCP Assessment Portfolio

- NSF EPSCoR, 46%
- NIH INBRE, 33%
- Other, 20%
AAAS STEM Program Assessments: A Retrospective Analysis

- RCP assessments from 2010 to 2017
 - Reports on programs assessed at least 3 times over 5 years
 - 15 reports, including 48 institutions

No. of Institutions Represented in AAAS Study

- Research-intensive
- Primarily Undergraduate
- Minority Serving Institutions
- Tribal Colleges
- Community Colleges
- Healthcare Centers/Hospitals
- Other (e.g., National Labs, NFP)
Retrospective Analysis: Approaches to Engage URMs in UGR

Areas of Focus

- Students/Training
- Faculty/Mentoring
- Outreach
- Leadership
- Communication
- Research/Program Cores
- Funding
- M&E
- Sustainability

- Broadening Access and Participation
- Addressing Student Preparedness
- Developing Mentors
- Institutionalizing Support for UGR
Approaches to Broaden Access and Participation

- Offer challenging projects that students can take ownership of
- Ensure research opportunity is accessible to students (travel and lodging), summer and academic year UGR
- Engage students after the summer program; utilize alumni networks
- Highlight non-PhD career options in STEM

- **Community-based participatory research and service learning opportunities**
 - Potential public health or clinical research focus
 - Partnered with community organizations, clinics, centers
 - Engaged and serviced students’ local or home community
Approaches to Address Student Preparedness

- Expose students to sophisticated equipment/methodology
- Utilize small group discussions and working groups

Intensive boot camp orientation (1-2 weeks) at the beginning of the summer

- Provided training in basic lab techniques, research ethics, and field methods
- Offered specialty training and certifications (e.g., cultural competency, CPR, phlebotomy)
- Assessed knowledge acquisition with pre- and post-testing
Approaches to Develop Mentors

- Require mentor training/orientation
- Incorporate teaching and mentoring opportunities for post-docs and graduate students

Active matching process to place students with a faculty mentor

- Promoted direct faculty engagement with student during program
- Exposed students to a diverse pool of mentors

Strong faculty-student relationships is a strong predictor of choosing STEM graduate study *(Hurtado, 2014)*
Approaches to Institutionalize Support for UGR

- Enable course credit for UGR throughout the year
- Provide gap funds when grant cycle is misaligned to internship schedule
- Incentivize and recognize faculty for participation in UGR
- Sponsor internal competition for students to continue summer research during the academic year (awards <$10,000)

Multi-program symposia and seminars

- Allowed students to communicate science and exposed them to the larger scientific community
- Maximized individual program resources
- Incentivized the institutions to provide additional support to event
- Attracted attention of the surrounding non-STEM community
References and Resources

- National Science Board’s STEM Education Data: https://www.nsf.gov/nsb/sei/edTool/

- National Survey of Student Engagement: http://nsse.indiana.edu/
<table>
<thead>
<tr>
<th>Internal Origin (attributes of the organization)</th>
<th>Helpful to achieving the objective</th>
<th>Harmful to achieving the objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRENGTHS - internal, positive attributes of your group/program/institution. These are things that are within your control.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Successful processes implemented</td>
<td>WEAKNESSES - negative factors that detract from your strengths. These are things that you might need to improve on to be more effective.</td>
<td></td>
</tr>
<tr>
<td>• Assets of your team/environment (e.g., network, staff, equipment, funding, skills, reputation)</td>
<td>• Things needed to be more competitive</td>
<td></td>
</tr>
<tr>
<td>• Competitive advantages</td>
<td>• Processes needing improvement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Tangible assets needed (e.g., money or equipment)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Gaps in team, program, or institution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Location fit</td>
<td></td>
</tr>
<tr>
<td>EXTERNAL ORIGIN (attributes of the environment)</td>
<td>OPPORTUNITIES - external factors in your environment that are likely to contribute to your success, but have not been incorporated or utilized.</td>
<td>THREATS - external factors that you have no control over. Consider identifying contingency plans for dealing them if they occur.</td>
</tr>
<tr>
<td></td>
<td>• Trends in research attractive to students</td>
<td>• Sustainability of supplies, funds, and resources</td>
</tr>
<tr>
<td></td>
<td>• Upcoming events to promote-grow program</td>
<td>• Maintaining pace with advances in technology</td>
</tr>
<tr>
<td></td>
<td>• Policy and funding developments</td>
<td>• Research, funding, or career trends that challenge your goals</td>
</tr>
<tr>
<td></td>
<td>• Reputation</td>
<td></td>
</tr>
</tbody>
</table>
Discussion

• Broadening access and URM participation in UGR
• Addressing student preparedness
• Engagement of faculty and program alumni
• Institutionalizing support
<table>
<thead>
<tr>
<th>STRENGTHS</th>
<th>WEAKNESSES</th>
<th>OPPORTUNITIES</th>
<th>THREATS</th>
</tr>
</thead>
</table>
| Internal, positive attributes of your group/program/institution. These are things that are within your control.
- What processes have shown success implementing your goals?
- What assets do you have in your team/environment (e.g., staff, network, skills, reputation, equipment, technology, funding, facilities)?
- What competitive advantages does your group/program/institution have? | Negative factors that detract from your strengths. These are things that you might need to improve on to be more effective.
- What things would make your group/program/institution more competitive?
- What processes need improvement?
- Are there tangible assets that you need (e.g., money, equipment)?
- Are there gaps on your team or within your program/institution?
- Is your location ideal for your success? | External factors in your environment that are likely to contribute to your success, but have yet not been utilized/maximized.
- What trends in your research area will attract student participation?
- What coming events could you utilize to promote/grow your program?
- Are there upcoming policy or funding changes that might impact your program positively?
- Do students, colleagues, or external entities think highly of you? | External factors that you have no control over. Consider identifying contingency plans for dealing them if they occur.
- Which other groups draw from your current pool of resources (e.g., facilities, funds, audience)?
- What supplies/funds will be available long term to support your needs?
- How might technology advances change how you do your work?
- Are there research/funding trends that could become a threat to your goals? |