Exercice pratique de formation :
ANALYSE ET GESTION DES RISQUES
POUR LES SCIENCES DE LA VIE

Based on the article “Genetic Variation for Markers Linked to Stem Rust Resistance Genes in Pakistani Wheat Varieties” by Ejaz M. et al.
Glossaire des risques

Subset of Definitions from WHO

“Bioethics: The study of the ethical and moral implications of biological discoveries, biomedical advances and their applications, as in the fields of genetic engineering and drug research.”

“Biorisk: The risk (risk is a function of likelihood and consequences) that a particular biological event (in the context of this document: naturally occurring diseases, accidents, unexpected discovery, or deliberate misuse of biological agents and toxins), which may affect adversely the health of human populations, may occur. An assessment of these risks can be both quantitative and qualitative.”

“Biorisk reduction: The reduction of the occurrence of risks associated with exposure to biological agents and toxins, whatever their origin or source, encompassing the full spectrum of biorisks.”

“Laboratory biosafety: The containment principles, technologies and practices that are implemented to prevent unintentional exposure to biological agents and toxins, or their accidental release.”

“Laboratory biosecurity: The protection, control and accountability for valuable biological materials within laboratories, in order to prevent their unauthorized access, loss, theft, misuse, diversion or intentional release.”

“Dual-use life sciences research: Knowledge and technologies generated by legitimate life sciences research that may be appropriated for illegitimate intentions and applications.”

“Research excellence: Research that is of high quality, ethical, rigorous, original and innovative.”
Additional Definitions

Research Misconduct: “Fabrication, falsification, or plagiarism in proposing, performing, or reviewing research or in reporting research results.”

Falsification: “Manipulating research materials, equipment, or processes, or changing or omitting data or results such that research is not accurately represented in the research record.”

Fabrication: “making up data or results”

Plagiarism: the use “of another person’s ideas, processes, results, or works with our giving appropriate credit.”

Protection of Human Subjects: “Protect the interest of research Subjects” by ensuring “that risks to human participants are minimized; that risks are reasonable given the expected benefits; that the participants or their authorized representatives provide informed consent; that the investigator has informed participants of key elements of the study protocol; and that the privacy of participants and confidentiality of data are maintained.”

Animal Subject Care and Use: “to establish and maintain proper measures to ensure the appropriate care and use of all animals involved in research, research training, and biological testing.” Researchers should consider “reduction in the numbers of animals used, refinement of techniques and procedures to reduce pain and distress, and replacement of conscious living higher animals with insentient material.”

Negligence: “Haste, carelessness, inattention – any of a number of faults can lead to work that does not meet scientific standards or the practices of a discipline.”

The definitions below are from the *U.S. National Academy of Sciences (1992) Responsible Science, Volume I: Ensuring the Integrity of the Research Process.*

Research Integrity: “the adherence by scientists and their institutions to honest and verifiable methods in proposing, performing, evaluating, and reporting research activities.

Research Process: “the construction of hypotheses; the development of experimental and theoretical paradigms; the collection, analysis, and handling of data; the generation of new ideas, findings, and theories through experimentation and analysis; timely communication and publication; refinement of results through replication and extension of the original work; peer review; and the training and supervision of associates and students.”
Cadre de l'analyse des risques

Identification des risques
- Quels sont les risques éventuels associés à cette recherche ?

Évaluation des risques
- Quelles sont les probabilités d'occurrence des risques ?
- Quelles sont les conséquences si les risques se produisent ?
- Les risques l'important-ils sur les avantages ?

Gestion des risques
- Quelles stratégies de gestion des risques pourraient réduire la probabilité d'occurrence du risque ? ou encore quelles sont les conséquences si les risques se produisent ?

Conduite du projet

Communication sur les risques
- Quels risques devraient être communiqués au comité d'éthique ou autres comités d'examen de la recherche avant le lancement du projet ?
- Quels risques devraient être communiqués aux chercheurs et autres participants au cours du projet de recherche ?
- Quels risques, le cas échéant, pourraient survenir lors du partage des données ou des résultats de recherche ?
- Quelles stratégies pourraient être utilisées pour minimiser les risques ?

Publications présentées

Risques
- Biosécurité des laboratoires
- Bioéthique
- Sujets participants à la recherche
- Protection des animaux participants à la recherche
- Intégrité dans la recherche
Identification des risques

<table>
<thead>
<tr>
<th>Réponse</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quels sont, le cas échéant, les éventuels risques posés par cette recherche en matière de biosûreté et de biosécurité sur l'environnement et d'autres plantes de laboratoire ?</td>
</tr>
<tr>
<td></td>
<td>Cette recherche (souches pathogènes ou résultats) pourrait-elle être utilisée délibérément pour nuire à autrui ? Sur les cultures de blé ? L'environnement ?</td>
</tr>
<tr>
<td></td>
<td>Quels sont, le cas échéant, les risques potentiels de l'approche conventionnelle pour le dépistage des gènes de résistance ?</td>
</tr>
<tr>
<td>Réponse</td>
<td>Question</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>Quels sont, le cas échéant, les risques qui ont été réduits du fait du dépistage des gènes de résistance par marqueurs moléculaires plutôt que par l’approche conventionnelle ?</td>
</tr>
<tr>
<td></td>
<td>Dans quelle mesure cette recherche sur champignon hautement pathogène, comme la rouille, pose-t-elle un danger de biosécurité ou de double usage ?</td>
</tr>
<tr>
<td></td>
<td>Quelles sont les ressources, les expertises, la formation et les outils qui pourraient être utiles pour l’évaluation des risques identifiés associés à cette recherche ?</td>
</tr>
<tr>
<td>Question</td>
<td>Réponse</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Quel(le)s sont les lois, réglementations ou bonnes pratiques qui pourraient être utilisé(e)s pour réduire les risques identifiés de cette recherche ?</td>
<td></td>
</tr>
<tr>
<td>Quelles sont, le cas échéant, les compétences et formations nécessaires pour mener à bien ce projet de recherche (dont l'obtention, la culture et l'analyse des échantillons avec succès et en toute sécurité ?</td>
<td></td>
</tr>
<tr>
<td>Pouvez-vous estimer la réduction des risques en matière de biosécurité par le simple fait d'utiliser des marqueurs moléculaires ?</td>
<td></td>
</tr>
<tr>
<td>Quelles approches pourraient être utilisées pour réduire les risques identifiés en matière de libération accidentelle de plantes de laboratoire dans l'environnement ?</td>
<td></td>
</tr>
</tbody>
</table>
Communication sur les risques

<table>
<thead>
<tr>
<th>Réponse</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quels risques doivent-être communiqués et à qui durant cette recherche ?</td>
<td>Comment communiqueriez-vous les risques et les mesures de gestion de ces risques à un comité d'examen institutionnel ou de sécurité environnementale, organisme de financement, et au grand public ?</td>
</tr>
<tr>
<td>Effectuer une recherche sur un matériel potentiellement dangereux ou hautement pathogène change-t-il les stratégies de communication de cette recherche ? Si oui, de quelle façon ?</td>
<td>Dans quelles circonstances les chercheurs ont-ils une obligation éthique ou en matière de sécurité publique à partager leurs découvertes avec le grand public ?</td>
</tr>
<tr>
<td>Les risques identifiés l'emportent-ils sur les bénéfices de cette recherche pour une communication ouverte des résultats de recherche ?</td>
<td>Si oui, que peuvent faire les chercheurs pour réduire les risques lors de la communication des résultats ?</td>
</tr>
</tbody>
</table>
Discussion finale : risque dans votre propre recherche

1. **Identification** : Quels sont les principaux risques que vous rencontrez dans votre recherche ? Pensez aux risques concernant votre propre personne, autres chercheurs et techniciens dans le domaine clinique et / ou en laboratoire. Pensez aux risques pour le grand public, l'environnement et l'économie du pays, votre institution, et les sujets de recherche humains et animaux.

2. **Évaluation** : Quelles sont les conséquences des risques identifiés s'ils se produisent ? Sur la base de votre évaluation des conséquences des risques et leurs probabilités d'occurrence, ceux-ci pourraient-ils nuire à des personnes, des animaux, des cultures agricoles, ou l'économie du pays ? Quelles sont les ressources, les capacités et les compétences nécessaires pour atténuer ces risques ?

3. **Gestion** : Quelles stratégies pourriez-vous utiliser ou quelles sont les ressources dont vous aurez besoin afin de minimiser ou d'atténuer ces risques ? (note : ces stratégies ne doivent pas nuire à la qualité de la recherche.) Argumentez les idées découlant de votre propre expérience et de celles décrites dans cet exercice pratique. Existe-t-il des risques associés à votre recherche qui ne peuvent être atténués de manière adéquate ?

4. **Communication** : Pour votre recherche quels sont les risques, le cas échéant, associés à la communication lors de la phase de conception du projet, de conduite de la recherche, de présentation des résultats lors de conférences scientifiques et de publications ? Quelles stratégies pourriez-vous utiliser pour atténuer ces risques ? Y a-t-il des intervenants avec qui vous devez partager les risques de votre recherche ? Quelles sont vos conclusions ?
Exemple de stratégie d’analyse de risques

- Describe work activities
- Identify hazards
- Determine risks
- Decide whether or not risk is acceptable
 - If no
 - Revise or close Project
 - If yes
 - Proceed with work and monitor controls
- Prepare risk control action plan
- Implement control measures
- Review adequacy of plan

Figure 1 — Risk assessment strategy