A Hassle A Day May Keep The Doctor Away:
Stress & The Augmentation of Immune Function

Firdaus Dhabhar
Stanford University
Psycho-Neuro-Immunology (PNI)

- stress
- anxiety
- depression
- pessimism
- personality
- fatigue

- nervous system
- endocrine system
- immune system

HEALTH
Stress can be defined as a cluster of events that begins with a stimulus (stressor), precipitates a reaction in the brain (stress perception), and subsequently results in the activation of fight / flight systems in the body (stress response).

Acute stress = minutes to hours
Chronic stress = weeks to months to years & dysregulation of diurnal rhythm

(Dhabhar & McEwen, Brain Behavior & Immunity, 1997, 11: 286.)
• Most biomedical research is focused on pathogens & disease

• While my laboratory also studies disease, our main emphasis is on understanding the biological mechanisms that maintain or restore HEALTH

• The following presentation will suggest that the acute/short-term, fight-or-flight stress response is nature’s fundamental survival system and one of its principal health-promoting mechanisms
Our Initial Hypothesis: Just as the stress response prepares the cardiovascular, musculoskeletal, and neuroendocrine systems for fight or flight, under some conditions, it may also prepare the immune system for challenges (wounding or infection) that may be imposed by a stressor (predator) (Brain, Behavior, & Immunity, 1994)
Short-term stressors will **ENHANCE** immune function within compartments (e.g. skin) that are likely to be compromised by the actions of a “stressor” (e.g. predator, surgery)...
Q: What happens to immune cell numbers in the blood during acute / short-term stress?
Surgery stress induced changes in blood leukocyte numbers

CTL (CD3CD8) number (1000/µl)

Time (before, during, & after surgery)

Collaboration with: Ickovics, Jokl, Rosenberger, Fulkerson, & colleagues, Yale; & Epel (UCSF)
Similar redistribution patterns seen during stress in mouse, rat, horse, monkey, and other species...
Integrated Model

BARRACKS → BOULEVARDS → BATTLE STATIONS

- spleen
- marginated pool
- bone marrow?
- skin
- lymph nodes

LY, MO
early late

BLOOD
duration of stress

hormones?
genesis & proteins?

functional consequences?
clinical ramifications?

Dhabhar et al, 1995, Journal of Immunology, 154, 5511
Efficient wound healing requires rapid leukocyte infiltration into a wound site

Q: Can acute stress experienced at the time of wounding/surgery accelerate the rate of leukocyte entry at the site of wounding/surgery?
Does acute stress ↑ leukocyte traffic to a site of surgery?

Absorbable Surgical Sponge

• hemostatic plug
• repair wound cavities, ear drums, tooth extraction sockets
• “filler” in some surgical procedures
NS or STR

implant sponge sc

extract sponge @ 6, 24, 48, 72 h

enumerate & ID leukocytes, cytokines, etc

Viswanathan & Dhabhar, PNAS, Vol 102
Finding: Acute stress increases immune cell traffic into a site of immune activation

Q: Does this increase the magnitude/robustness of the ensuing immune response?

Implication: Harness acute stress physiology to enhance vaccine efficacy
Hypothesis: Mice that are acutely stressed before primary immunization will show higher numbers of memory cells in sentinel lymph nodes
No Stress

Acute Stress

immunize with model vaccine antigen (KLH)

quantify memory T cells in sentinel lymph nodes

Dhabhar & Viswanathan, Amer J. Physiology
Acute stress ↑↑ memory T cells in sentinel lymph nodes

Implication: ↑↑ memory for the immunizing antigen

Dhabhar & Viswanathan, Amer J. Physiology
Hypothesis: Mice that were acutely stressed at the time of primary immunization will show an enhanced immune response upon antigen re-exposure months later

Dhabhar & Viswanathan, Amer J. Physiology
9 months!!!

re-expose to antigen at novel site (mimics infection)

quantify immune response
Acute stress at primary immunization enhances a secondary immune response 9 months later

Implication:
↑↑ effector function
↑↑ protection

Dhabhar & Viswanathan, Amer J. Physiology
Acute stress before primary immunization ↑↑ Type 1 cytokine levels at site of secondary immune response 9 months later

Implication: ↑↑ effector function, ↑↑ protection

Dhabhar & Viswanathan, Amer J. Physiology
Immune activation (wounding, surgery, vaccination) invariably induces a stress response.

Natural stressors (aggression, predation, accidents) invariably activate the immune system.

The acute stress response may act as a natural, endogenous adjuvant that boosts immune responses that are coupled with stress.
Some individuals mount robust, adaptive, acute stress responses, but others may not.

In many clinical situations (vaccination, surgery, infection, cancer), we may need to turn this response **ON** to **enhance protective immunity**.

In patients with proinflammatory or autoimmune disease, we need to turn this response **OFF** to **inhibit exacerbation of pathological immune reactions**.
Q: What are the hormones that mediate an acute stress induced enhancement of skin immune function?

A: Epinephrine (1-24 h) & corticosterone (24 h…)

Clinical Relevance of Acute Stress Induced Leukocyte Redistribution

Study: Acute Stress & Recovery From Knee Surgery

Aim 1: Identify blood leukocyte redistribution profiles of patients undergoing knee surgery (meniscal repair, ACL reconstruction)

Aim 2: Examine whether profiles predict recovery

Hypothesis: “Adaptive” leukocyte redistribution during surgery will predict/mediate enhanced recovery

Collaboration with: Ickovics, Jokl, Rosenberger, Fulkerson, & colleagues, Yale; & Epel (UCSF)
A priori definition of “adaptive” leukocyte redistribution during stress of surgery:

BARRACKS ➔ BOULEVARDS ➔ BATTLE STATIONS

- spleen
- marginated pool
- bone marrow?

LY, MO
BLOOD

early
late
time during surgery

site of surgery

skin
lymph nodes
Some patients show “adaptive” leukocyte redistribution during surgery stress, others do not…

Can these differences predict recovery?

Collaboration with: Ickovics, Jokl, Rosenberger, Fulkerson, & colleagues, Yale; & Epel (UCSF)
High redistributors show enhanced recovery

patients who showed adaptive redistribution

Collaboration with: Ickovics, Jokl, Rosenberger, Fulkerson, & colleagues, Yale; & Epel (UCSF)
Goals:

- Identify low versus high responders before patient goes in for surgery
- Identify factors mediating gender differences
- Design behavioral and pharmacological interventions to put low responders into high responder state during surgery
STRESS PHYSIOLOGY
↑ IMMUNE FUNCTION

BENEFICIAL:
- wound healing
- vaccination
- infection
- cancer?

HARMFUL:
- psoriasis, dermatitis,
- asthma, IBD,
- inflammatory,
- autoimmune,
- cardiovascular disease,

elucidate mechanisms…
…translate to clinic…
What about stress & immunosuppression?
The Stress-Immune Spectrum

ACUTE / EUSTRESS
- brief (0.5 - 2.5 h)
- normal circadian rhythm
- adaptive response
- ↑ leukocyte mobilization
- ↑ immune responses

J Immunology, 95, 96a,b
PNAS, 00, 02, 05
Am J Psychiatry, 03
Am J Physiology, 05; Int Imm 05

CHRONIC / DISTRESS
- long (wks, mns, yrs)
- dysregulated rhythm
- maladaptive response
- ↓ leuko base & mobilizn
- ↓ protective immune resp
- ↑ dysregulation

BBI, 97, 02; Neuroendocrinol, 97
PNAS, 99, 04
JNCI, 05; J Proteome Res, 07

Dhabhar & McEwen, Brain, Behavior, & Immunity, 1997
Overall Conclusion:

Acute stress directs immune cell traffic to potential “battle stations” in the body, enhances immune cell function, and augments primary (innate), and secondary (adaptive) immune responses
We need to study, and clinically harness, the acute stress survival response, that evolution has already finely chiseled and sculpted, just as much as we study its maladaptive ramification (chronic stress) that evolution yet has to catch up with…

(Dhabhar, Abelson Seminar, AAAS, 2008)
<table>
<thead>
<tr>
<th>My Lab</th>
<th>Stanford</th>
<th>UCSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jean Tillie*</td>
<td>David Spiegel & lab</td>
<td>Elissa Epel *</td>
</tr>
<tr>
<td>Vivian Chou</td>
<td>David Lyons</td>
<td>Elizabeth Blackburn</td>
</tr>
<tr>
<td>Caroline Hu</td>
<td>Jamie Zeitzer</td>
<td>Owen Wolkowitz</td>
</tr>
<tr>
<td>Rebecca Vu</td>
<td>James Gross</td>
<td>Jue Lin, et al.</td>
</tr>
<tr>
<td>Jillian Campbell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stephanie Hwang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phillip Chui</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mariya Kalashnikova</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rachel Knopp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuong Phan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kavitha Viswanathan*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alison Saul*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kanika Ghai</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Christine Daugherty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cynthia Walter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carrie Symmonds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allison Litzinger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heather Petrasek</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rockefeller</td>
<td>Yale</td>
</tr>
<tr>
<td></td>
<td>Bruce McEwen*</td>
<td>Jeannette Ickovics*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Patty Rosenberger*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peter Jokl, et al. *</td>
</tr>
<tr>
<td></td>
<td>Ohio State</td>
<td></td>
</tr>
<tr>
<td>Tatiana Oberyszyn</td>
<td>William Malarkey</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stanley Lemeshow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Randy Nelson</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ning Quan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hoffmann La-Roche</td>
<td></td>
</tr>
<tr>
<td>Horst Blüethmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIH: AI48995, AR46299, CA107498</td>
<td>Dana Foundation, MacArthur Foundation</td>
<td></td>
</tr>
</tbody>
</table>