“Instructional Approaches/Strategies: Informal Education”

Mark S. Frankel, Ph. D.
Director, Scientific Freedom, Responsibility and Law Program
AAAS

U.S. - China Workshop on Ethics Education in Science
Co-Sponsored by AAAS and CAST
April 28-29, 2009
San Diego, CA

Informal Science Education (ISE)
Program Solicitation NSF 03-511 National Science Foundation

Designed to increase public interest in, understanding of, and engagement with science, technology, engineering, and mathematics.

Projects have the informal learner (from young child to senior citizen) as their primary audience, and are not related to formal school activities or curricula.

Outcome is an informed citizenry that has access to the ideas of science and engineering, and an understanding of their role in enhancing quality of life.

Categories of projects include media (television, radio, film); exhibits (museums, science centers, aquariums, zoos, libraries, other informal learning institutions); and community and youth-based programs.
Scientists' Social Responsibilities

- Contribute to knowledge for social benefit
- Identify risks and benefits
- Acknowledge uncertainties
- Present research results objectively
- Counter misrepresentation/misuse of scientific information
- Distinguish between evidence-based advice and opinion/advocacy
- Work to improve public understanding of science
- Resist suppression of scientific information related to public welfare
- Resist access to scientific information that may be used by others for ill will
American Chemical Society

Chemical Professionals Acknowledge Their Responsibility

To the public

Chemical professionals have a responsibility to serve the public interest and safety and to further advance the knowledge of science. They should actively be concerned with the health and safety of co-workers, consumers and the community. Public comments on scientific matters should be made with care and accuracy, without unsubstantiated, exaggerated, or premature statements.

Code of Ethics for Engineers

- Engineers shall at all times strive to serve the public interest.
- Engineers are encouraged to participate in civic affairs; career guidance for youths; and work for the advancement of the safety, health, and well-being of their community.
- Engineers shall avoid all conduct or practice that deceives the public.
Survey of Scientific Societies on Promoting Research Integrity

American Association for the Advancement of Science
Mark S. Frankel, PhD
Sanyin Siang
Margot Iverson
2000

Survey Sample Size

- 126 Scientific Societies
- 45% (57 useable surveys) were returned
Table 1 – Scientific Disciplines of Participating Societies

<table>
<thead>
<tr>
<th>DISCIPLINE CATEGORIES</th>
<th>NO.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural/Botanical</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Animal/Life Sciences</td>
<td>12</td>
<td>21</td>
</tr>
<tr>
<td>Medical/Dental</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>Physical and Atmospheric Sciences/Computing</td>
<td>14</td>
<td>25</td>
</tr>
<tr>
<td>Social Sciences</td>
<td>13</td>
<td>23</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>57</td>
<td>101</td>
</tr>
</tbody>
</table>

*Percentages that do not add up to 100 percent are a result of rounding off.

Table 2 – Does your society currently engage in or plan to engage in any activities for promoting research integrity?

<table>
<thead>
<tr>
<th>ACTIVITIES?</th>
<th>NO.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>30</td>
<td>53</td>
</tr>
<tr>
<td>No</td>
<td>26</td>
<td>46</td>
</tr>
<tr>
<td>No Response</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>57</td>
<td>101</td>
</tr>
</tbody>
</table>

Percentages that do not add up to 100 percent are a result of rounding off.
Table 3 – If yes, what for do those activities take?*

<table>
<thead>
<tr>
<th>ACTIVITIES</th>
<th>NO.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programs at Annual/Regional Meetings</td>
<td>23</td>
<td>40</td>
</tr>
<tr>
<td>Ethics Committees</td>
<td>20</td>
<td>35</td>
</tr>
<tr>
<td>Columns/Articles in Professional Journals/Newsletters</td>
<td>18</td>
<td>32</td>
</tr>
<tr>
<td>Publications on Research Ethics</td>
<td>15</td>
<td>26</td>
</tr>
<tr>
<td>Workshops</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>Resource Materials</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Discussion Groups</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Special Activities for Students/Trainees</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Mentorship Programs</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Other</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Awards to Members Exemplifying Integrity in Research</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>In-service Training</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hotlines</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*Respondents were instructed to check as many activities as applied

What is Mentoring?

Taking special interest in a person’s professional development and career. Goal is not to “clone” oneself, but to foster confidence and independent thinking.

To teach the normative standards (values and ethics) of the profession/discipline in order to help the student/trainee’s socialization into the culture of the profession/discipline.

While the professional community “does not produce the next generation biologically, it does socially,” and the character and behavior of individuals can be explained, at least in part, by how well the community and individual mentors have done.
Qualities of a Good Mentor

- Values the organization, its mission and its work
- Treats everyone with respect and accepts personal differences
- Able to establish a comfortable environment for discussions
- Demonstrates sensitivity to student/trainee’s needs
- Shares information and experience openly
- Good communication and listening skills
- Knows his/her field well
- Motivating, encouraging, positive and empowering
- Willing to set aside/commit time to mentor someone
- Committed to making a difference, one individual at a time

Role of The Student/Trainee:

- Assess your development needs and goals
- Demonstrate interest in your career growth
- Develop mentoring plan with mentor including time, frequency, duration, and place of meetings
- Be honest in communicating with mentor
- Maintain confidentiality and open lines of communication
- Diligently pursue course work, internships, research and teaching assignments
- Be willing to give feedback about mentoring program
- Learn from the experience, knowledge, and wisdom of mentor
Postdoctoral Scholar Mentoring Guidelines

At UC San Diego, postdoctoral experience emphasizes scholarship and continued research training under the oversight of a faculty mentor. “Faculty mentors are responsible for guiding and monitoring the advanced training of Postdoctoral Scholars.”

A Guide to Training and Mentoring in the Intramural Research Program at NIH

- Preface
- Introduction
- Supervisors, Mentors, and Trainees
- Training in Scientific Investigation
- Training in Communication
- Training in Personal Interactions
- Career Planning
- Training in Scientific Responsibility
- Conclusion
- Directory of Useful Web Sites
AAAS Mentor Awards

Nomination Deadline: 31 July

The two categories of the AAAS Mentor Awards (Lifetime Mentor Award and Mentor Award) both honor individuals who during their careers demonstrate extraordinary leadership to increase the participation of underrepresented groups in science and engineering fields and careers. These groups include: women of all racial or ethnic groups; African American, Native American, and Hispanic men; and people with disabilities.